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AN EMPIRICAL STUDY OF ALTERNATIVE ESTIMATORS

FOR p AND ¢

Donald T. Searls, Westat Research, Inc.

In two previous pepers [1], [2] estimators
for p were developed which tended to minimize the
effect of large true observations occurring in
small samples. Proofs that these estimators could
have smaller mean-squared errors than y were pre-
sented.

This paper will consider analagous estima-
tors for o®, however since the proofs become ex-
tremely cunbersome the gains will be demonstrated

with an empirical sampling study.

The first estimator considered is the one
vhere observations larger than a predetermined
cutoff point, t, are discarded. This procedure
leads to the estimators }l, and -12 .
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where r is the number of observations less than
t.

The next estimators are formed by substi-
tuting the value of t for those observations
greater than t. For the estimator of ¢© only one
t is used.
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then
s2=(r+1)8-17 , (r31)
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‘o. (1‘80)

If one is unwilling to discard observations
an optimumm weight for the observations [2] and
squared deviations can be derived,

n

vhere v = 2® .

A similar development for estimating o2
glves:

n
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MEE (5.2) = ¥ (2-1)2 (u,-0")/n

+ a“[ 1-(n-1)w]® .

Differentiating with respect to W and
solving gives approximately

W=1/[(n-1) +B)] .

Terms with small contributions as n in-
creases have been deleted.
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Hence
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where B, = /0h
o T My .

Since 32 = 3 for the normal distribution,

Z (y -y 2

2 1
] w = Ln—_*_—-r—— for this situation.

Positively skewed populations were used to
demonstrate the effectiveness of the alternatives.
See table 1 for the tabulation of the 1000 obser-
vations obtained from 200 samples of size 5 from

each population.

Table 1. Number of observations by intervals
and other characteristics for populations used.

Distribution

Interval I II
0-1 Y4 134
1-2 187 562
2-3 68 171
3=k k1 75
b5 19 38
5-6 9 9
6-7 " 5
7-8 3 2
8-9 1 2
o+ 0 2
Total 1000 1000
Parameter I II
" 959 1.866

o2 1.556 1.328

cv 1.301 .618

The 1000 observations were considered as the
complete populations for comparison purposes.
Distribution I has a coefficient of variation
greater than one (1.301) and distribution II has
a coefficient of variation less than one (.618) .

Tables 2 and 3 present the mean-squared
errors for different cutoff points and sample
sizes for the two distributions. Results for sam-
ples of sizes 10 and 20 were inferred from the
results for samples of size 5 by adding together
the bias and the variance with the appropriate
division.

Figures 1 and 2 demonstrate graphical]y the
gains achieved with the alternatives s
for samples of size 20. Similar patter&s are sﬁown
in the tables for yl and yt .

It is evident that s2 achieve gains
over a wider region than do 8 an& . Also,
lower mean-square d errors are achieved by

. However 8.2 and ¥, are superior in
tﬁe regioﬁ vhich would norma be of the most
interest and they are simpler to work with since
they are the estimators formed by ignoring the
large observations and using only those remaining.
For these reasons it would appear to be preferable
to use s, and ¥, vhen sampling from distributions
of the types u.se& in this study. Of course if no
information is available beforehand as to what
might constitute a "large" observation the
choosing of the cutoff point becomes very diffi-
cult. The results indicate that gains are achieved
for a rather large region, however if a mistake
is made and the point is chosen too small, rather
disastrous consequences are obtained. In practice
the sampler frequently has some very general
ideas concerning minimum and maximm possible
values and these plus information concerning the
general shape of the distribution will generally
provide sufficient information to intelligently
pick a t value.

Figure 3 gresents the distribution of
5,2 (t=4) and s® for the 200 samples of size 5
distribution II.
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Table 2. Mean-squared errors for alternative estimators of p and o2
for distribution I.
Cutoff Mean squared errors
point
n t y Srl Srt s2 521 s2 s
5 9 319 .319 319 4.363 L.363 4.363
7 319 .273 .309 4.363 2.519 3.524
6 319 .264 .296 4,363 1.880 2.799
5 319 .233 2Tk L.363 1.348 1.879
L .319  .216 24k 4.363 1.141 1.174
3 .319  .209 .200 4,363 1.265 .86k
2 .319 .ohk .156 4.363 1.633 1.178
1 .319  .465 .222 4.363 2.201 1.930
0 .39 .920 .920 L. 363 2.h21 2.k21
10 9 160 .160 .160 2.181 2.181 2.181
7 .160 137 .155 2,181 1.287 1.764
6 L1600 .134 ;148 2.181 1.003 1.410
5 .160  .121 .138 2.181 .819 971
4 L1600 .122 .123 2,181 .879 .683
3 .160 .143 .105 2.181 1.182 .691
2 160 .207 .100 2.181 1.609 1.142
1 160 450 .204 2.181 2.198 1.927
0 .160 .920 .920 2.181 2.421 2.421
20 9 .080 .080 .080 1.091 1.091 1.091
7 .080 .069 077 1.091 .670 .883
6 .080 .069 Noye™ 1.091 .565 .T11
5 .080 .066 .069 1.091 554 517
4 .080 .076 .063 1.091 .T48 438
3 .080 .110 .058 1.091 1.1 .605
2 .080 .189 .072 1.091 1.597 1.12k
1 .080  .Lh2 .196 1.091 2.197 1.925
o .080 .920 .920 1.091 2.421 2.k21
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Table 3. Mean-squared errors for alternative estimators of p and o2
for distribution II.

Cutoff Mean squared errors
point
n t ¥ 5'1 5’1: s2 321 s2 t

5 11 .20 .2ho .2k 3.941 3.941 3.941
°c .2k 221 .236 3.941 2.319 3.3%2

8 .2k 212 .231 3.941 1.718 2.82k

7 2h0 205 .220 3.941 1.278 2.037

6 240 197 .209 3.941 .95k 1.449

5 2k 173 .19k 3.941 .803 .954

L 240 L2164 .163 3.941 .839 .649

3 .2k 201 .129 3.941 1.106 .755

0 .2ho 3.135 3,483 3,941 1.764 1.764

10 11 .120  .120 .120 1.971 1.971 1.971
9 L1200 .110 .118 1.971 1.168 1.666

8 .120  .106 115 1.971 .882 1.hak

7 .120 .10k .110 1.971 .681 1.026

6 .120  .101 .105 1.971 557 .Th3

5 .120 .091 .097 1.971 .56 523

I .120  .103 .08k 1.971 721 451

3 .120 164 077 1.971 1.070 .706

0 120 3.483 3.483 1.971 1.76k 1.76k4

20 11 .060  .060 .060 .985 .985 .985
9 .060  .055 .059 .985 .593 .83k

8 .060 .05k .058 .985 RN .708

7 .060 .053 .055 .985 .383 .520

6 060 .052 .053 .985 .359 390

5 .060  .050 .0k9 .985 .386 307

L .060 .072 .Olk .985 662 .352

3 060 L1kl .051 .985 1.051 .681

0 .060 3.483 3,483 .985 1.764 1.764
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Figure 1. Mean-squared errors versus cutoff point - population I.
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Mean-squared errors versus cutoff point - population II.
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Figure 3. Comparison of distributions of st"’ and s2. (Distribution IT)
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