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In two previous papers [1], [2] estimators Let T = E + t , 

for were developed which tended to mine the j =1 
effect of large true observations occurring in 

samples. Proofs that these estimators could 
have smaller mean- squared errors than were pre- 
sented. 

=E +t2 . 
This paper will consider analogous estima- j =1 

tors for 02, however since the proofs become ex- 
tremely cumbersome the gains will be demonstrated 
with an empirical sampling study. 

The first estimator considered is the one 
where observations larger than a predetermined 
cutoff point, t, are discarded. This procedure 
leads to the estimators and 81 . 

y. 

j=1 

=t; (r =0) 

E (Yj 51)2 

= 
r-1 

= 0 

(yj < t) 

(r> 2) 

(r < 2) 

where r is the number of observations less than 
t. 

The next estimators are formed by substi- 
tuting the value of t for those observations 
greater than t. For the estimator of only one 
t is used. 

yt 
r < n) 

then 
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=r+1)S-T (r>1) 
r(r + 1) 

=0 . (r=0) 

If one is unwilling to discard observations 
an optimum weight for the observations [2] and 
squared deviations can be derived. 

where 

= + vZ)] E 
j=1 

= 

A si*tlar development for estimating s2 
gives: 

n 
8 w - 5)2 

= (n-1)2 (04-04)/n 

[1-(n-1)02 

Differentiating with respect to W and 
solving gives approximately 

= [(n-1) + 

Terms with small contributions as n in- 
creases have been deleted. 
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Hence 

n 
E 

2 J=1 

where = . 

Since = 3 for the normal distribution, 

= n + 2 
for this situation. 

Positively skewed populations were used to 
demonstrate the effectiveness of the alternatives. 
See table 1 for the tabulation of the 1000 obser- 
vations obtained from 200 samples of size from 
each population. 

Table 1. Number of observations by intervals 
and other characteristics for populations used. 

Interval 
Distribution 
I II 

-1 667 134 
1 -2 187 562 
2 -3 68 171 
3 75 
-5 19 

5 -6 9 9 

6 -7 4 5 
7 -8 4 2 
8-9 1 2 
9. o 2 

Total 1000 1000 

Parameter I II 

.959 1.866 

02 1.556 1.328 

CV 1.301 .618 

The 1000 observations were considered as the 
complete populations for comparison purposes. 
Distribution I has a coefficient of variation 
greater than one (1.301) and distribution II has 
a coefficient of variation less than one (.618) . 

Tables 2 and 3 present the mean- squared 
errors for different cutoff points and sample 
sizes for the two distributions. Results for sam- 
ples of sizes 10 and 20 were inferred from the 
results for samples of size 5 by adding together 
the bias and the variance with the appropriate 
division. 

Figures 1 and 2 demonstrate graphically the 
gains achieved with the alternatives s,2 
for samples of size 20. Similar patters are 
in the tables for and 

It is evident that and achieve gains 
over a wider region than dots 2 1 . Also, 
lower mean -squared errors achieved by 
s,2 t However are superior in 
tke region which would normalll be of the most 
interest and they are simpler to work with since 
they are the estimators formed by ignoring the 
large observations and using only those remaining. 
For these reasons it would appear to be preferable 
to use s12 and y, when sampling from distributions 
of the types used in this study. Of course if no 
information is available beforehand as to what 
might constitute a "large" observation the 
choosing of the cutoff point becomes very diffi- 
cult. The results indicate that gains are achieved 
for a rather large region, however if a mistake 
is made and the point is chosen too rather 
disastrous consequences are obtained. In practice 
the sampler frequently has some very general 
ideas concerning minimum and maximum possible 
values and these plus information concerning the 
general shape of the distribution will generally 
provide sufficient information to intelligently 
pick a t value. 

Figure 3 presents the distribution of 
s,2 (t=4) and s for the 200 samples of size 5 

distribution II. 
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Table 2. Mean - squared errors for alternative estimators of and 

for distribution I. 

n 

Cutoff 
point 

t 1 

Mean squared errors 

s2 

5 9 .319 .319 .319 4.363 4.363 4.363 

7 .319 .273 .309 4.363 2.519 3.524 

6 .319 .264 .296 4.363 1.880 2.799 

5 .319 .233 .274 4.363 1.31+8 1.879 

4 .319 .216 .244 4.363 1.141 1.174 

3 .319 .209 .200 4.363 1.265 .864 

2 .319 .244 .156 4.363 1.633 1.178 

1 .319 .465 .222 4.363 2.201 1.930 

0 .319 .920 .920 4.363 2.421 2.421 

9 .160 .160 .160 2.181 2.181 2.181 

7 .160 .137 .155 2.181 1.287 1.764 

6 .160 .134 :148 2.181 1.003 1.410 

5 .160 .121 .138 2.181 .819 .971 

.160 .122 .123 2.181 .879 .683 

3 .160 .143 .105 2.181 1.182 .691 

2 .160 .207 .100 2.181 1.609 1.142 

1 .160 .450 .204 2.181 2.198 1.927 

0 .160 .920 .920 2.181 2.421 2.421 

20 9 .080 .080 .080 1.091 1.091 1.091 

7 .080 .069 .077 1.091 .67o .883 

6 .080 .069 .074 1.091 .565 .711 

5 .080 .066 .069 1.091 .554 .517 

4 .080 .076 .063 1.091 .748 .438 

3 .080 .110 .058 1.091 1.141 .605 

2 .080 .189 .072 1.091 1.597 1.124 

1 .080 .442 .196 1.091 2.197 1.925 

o .080 .920 .920 1.091 2.421 2.421 
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Table 3. Mean - squared errors for alternative estimators of µ and 

for distribution II. 

n 

Cutoff 
point 

t 

Mean squared errors 

11 .24o .24o .24o 3.941 3.941 3.941 

.240 .221 .236 3.941 2.319 3.332 

8 .240 .212 .231 3.941 1.718 2.824 

.24o .205 .220 3.941 1.278 2.037 

6 .24o .197 .209 3.941 .954 1.449 

5 .240 .173 .194 3.941 .803 .954 

4 .240 .164 .163 3.941 .839 .649 

3 .24o .201 .129 3.941 1.106 .755 

o .240 3.483 3.941 1.764 1.764 

10 11 .120 .120 .120 1.971 1.971 1.971 

9 .120 .110 .118 1.971 1.168 1.666 

8 .120 .106 .115 1.971 .882 1.414 

7 .120 .104 .110 1.971 .681 1.026 

6 .120 .101 .105 1.971 .557 .743 

5 .120 .091 .097 1.971 .526 .523 

.120 .103 .084 1.971 .721 .451 

3 .120 .164 .077 1.971 1.070 .706 

o .120 3.483 3.483 1.971 1.764 1.764 

20 11 .060 .060 .060 .985 .985 .985 

9 .060 .055 .059 .985 .593 .834 

8 .060 .054 .058 .985 .464 .708 

7 .060 .053 055 .985 .383 .52o 

6 .060 .052 .053 .985 .359 .390 

.060 .050 .049 .985 .386 .307 

.o6o .072 .044 .985 .662 .352 

3 .060 .141 .051 .985 1.051 .681 

o .o6o 3.483 3.483 .985 1.764 1.764 
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Figure 1. Mean - squared errors versus cutoff point - population I. 
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Population II 
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2. Mean - squared errors versus cutoff point - population II. 
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Fiore 3. Comparison of distributions of and (Distribution II) 

473 


